قابل توجه نویسندگان محترم، مقالاتی که از تاریخ 1404/07/13 برای نشریه ارسال می شوند،  شامل پرداخت هزینه بررسی نخواهند شد.

----------------------------------- ---------------------------------------------------
Volume 10, Issue 2 (Semi-Annual 2025)                   CIAUJ 2025, 10(2): 179-210 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asgharpour Arshad M, Medghalchi L, Saadatjoo P. (2025). The Optimal Level of Orosi’s Girih Tile Patterns in Traditional Buildings of Isfahan from the Perspective of Visual Comfort and Thermal Comfort. CIAUJ. 10(2), 179-210. doi:10.61882/ciauj.10.2.581
URL: http://ciauj-tabriziau.ir/article-1-581-en.html
1- Department of Architecture, Faculty of Architecture and Urban Planning, Tabriz Islamic Art University, Tabriz, Iran
2- Department of Architecture, Faculty of Architecture and Urban Planning, Tabriz Islamic Art University, Tabriz, Iran , l.medghalchi@tabriziau.ac.ir
3- Civil Engineering Department, University of Tabriz, Tabriz, Iran
Abstract:   (2103 Views)
Optimal energy use is increasingly vital in architecture, where building envelopes significantly impact aesthetics, thermal comfort, daylighting, and energy use. This study examines various traditional Girih tile patterns in Isfahan’s building openings, focusing on their wood-to-glass ratios and effects on useful daylight, visual comfort, and thermal comfort. Using software simulations in Rhino7, Honeybee, Ladybug, MATLAB, and SPSS, the research identifies Pattern 6 as the most effective. While all patterns were beneficial, some achieved over 97% visual comfort by reducing glare, especially on western and eastern façades, and those allowing over 20% daylight above 3000 lux suited precision-focused spaces.
Full-Text [PDF 4403 kb]   (130 Downloads)    
Type of Study: Original Article | Subject: the comparative studies of Architecture and Urbanism in the realm of Cultural Iran
Received: 2024/08/28 | Accepted: 2024/11/25 | ePublished: 2025/12/30

References
1. Abdi Zadeh, S., Nasiri, H., & Ahmad Nejad, F. (2024). Evaluation of the porch impact in traditional houses of Tabriz on the daylight factor changes (Case study: Behnam, Ghadaki, GanjeyiZadeh Houses), Culture of Islamic Architecture and Urbanism, 9(1), 68-79. [in Persian] http://dx.doi.org/10.52547/ciauj.9.1.423 [DOI:10.61186/ciauj.9.1.91]
2. Assari, A., & Mahesh, T. M. (2011). Demographic comparative in heritage texture of Isfahan City, Journal of Geography and Regional Planning, 4(8), 463-470.
3. Bienvenido-Huertas, D., Sánchez-García, D., Rubio-Bellido, & C., Pulido-Arcas, J.A. (2020). Influence of the Improvement in Thermal Expectation Levels with Adaptive Setpoint Temperatures on Energy Consumption. Applied Sciences. 10(15), 1-22. [DOI:10.3390/app10155282]
4. Eslami, Sajedeh. (2018). Investigating factors affecting glare and ways to reduce it (case study: Central National Library of Kerman), Architecture, 1(4), 1-6. [in Persian]
5. Fallahfathi, R., & Mahdavinejad, M. (2021). Window geometry impact on a room wind comfort, Engineering, Construction, and Architectural Management, 28(9), 2381-2410. [DOI:10.1108/ECAM-01-2020-0075]
6. Fereshteh Nejad, Morteza. (1977). Girih in Architectural art of Iran, Publications of the association of national works. [in Persian]
7. Garretón, J. Y., Rodriguez, R., & Pattini, A. (2016). Effects of perceived indoor temperature on daylight glare perception, Building Research and Information, 44(8), 907-919. [DOI:10.1080/09613218.2016.1103116]
8. Grote, Linda, Wang, David. (2003). Research methods in architecture, Tehran University publications. [in Persian]
9. Hejazi Zadeh, Z., & Karbalyi daryi, A. (2015). Thermal comfort in Iran, The scientific- research and international quarterly of the geographical society, 13(46), 21-39. [in Persian]
10. Hosseini, S. M., & Heidari, S. (2022). General morphological analysis of Orosi windows and morpho butterfly wing's principles for improving occupant's daylight performance through interactive kinetic façade. Journal of Building Engineering, 59, 105027. [DOI:10.1016/j.jobe.2022.105027]
11. Hosseini, S. N., Hosseini, S. M., & HeiraniPour, M. (2020). The Role of Orosi's Islamic Geometric Patterns in the Building Façade Design for Improving Occupants' Daylight Performance, Journal of Daylighting, 7(2), 201-221. [DOI:10.15627/jd.2020.18]
12. Hosseini, S. M., Mohammadi, M., Schröder, T., & Guerra-Santin, O. (2020). Integrating interactive kinetic façade design with colored glass to improve daylight performance based on occupants' position. Journal of Building Engineering, 31(3), 1-18. [DOI:10.1016/j.jobe.2020.101404]
13. Hosseini, S. M., Mohammadi, M., Rosemann, A., & Schröder, T. (2018). Quantitative investigation through climate-based daylight visual comfort metrics due to colorful glass and orosi windows in Iranian architecture. Journal of Daylighting, 5(2), 21-33. [DOI:10.15627/jd.2018.5]
14. Iran National Building Regulations Topic 4. (2017), Bureau of National Building Regulations, Third edition. [in Persian]
15. KeyNezhad, Z., Mokhtari Kashavar, M., Maleki, A., & Shahbazi, Y. (2023). Investigating the Role of Water in the Howzkhaneh of Traditional Cold Climate Houses on the Thermal Comfort of the Residents; Case study: Ghadaki House, Tabriz, Culture of Islamic Architecture and Urbanism, 8(1), 20-32. [in Persian]
16. Klemm, W., Heusinkveld, B. G., Lenzholzer, S., & H. Jacobs, M. (2015). The psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands, Building and Environment, 83(9), 120-128. [DOI:10.1016/j.buildenv.2014.05.013]
17. Liu, X., Sun, Y., Wei, Sh., Meng, L., & Cao, G. (2021). Illumination distribution and daylight glare evaluation within different windows for comfortable lighting, Results in Optics, 3(3), 1-9. [DOI:10.1016/j.rio.2021.100080]
18. Madhoushian Nejad, M., & Fallahi, F. (2021). A comparative study of pattern and color of Qajar Orosies in Tabriz and Ardebil, Journal of fine arts-visual arts, 26(3), 87-98. [in Persian]
19. Makinejad, M. (2006). A selection of Asghar Sherbaf girih and Karbandi works, Arts Academy publications. [in Persian]
20. Mansouri, H. R., & Heydari, Sh. (2021). circuit energy approaches in architecture from the point of latent energy, Scientific journal of hot and dry climate architecture, 9(13),137-154. [in Persian]
21. Nourian, Y., & Kasraei, M. H. (2016). A Comparison of Traditional Knot to Contemporary Islamic Patterns; Focusing on their Applications in Contemporary Architecture, Culture of Islamic Architecture and Urbanism, 2(3), 63-75. [in Persian]
22. Oliver, P. (1989). Handed down architecture: tradition in transmission, Dwellings, settlements, and tradition: cross-cultural perspectives, 53-75.
23. Omidi, A., Golchin, N., & Masoud, S. E. (2022). Evaluating the visual comfort of Orosi windows in hot and semi-arid climates through climate-based daylight metrics: A quantitative study. Journal of Asian Architecture and Building Engineering, 21(5), 2114-2130. [DOI:10.1080/13467581.2021.1971534]
24. Pirnia, M.K. (2005). Styles of Iranian architecture, Sorush Danesh.
25. Pourahmadi, M., Khanmohammadi, M. A., & Farhang, M. (2018). Evaluation of glare indicators in educational buildings in the hot and dry climate of Iran, Architecture and Urbanism letter(Quarterly scientific journal of art university), 23(2), 29-49. [in Persian]
26. Qiyabaklo, Z. (2001). Methods of estimating the thermal comfort range, Fine arts, 10(4), 68-74. [in Persian]
27. Raisi, R., Vakilinezhad, R., & Khayyam Manesh, M., (2023). Daylight and Thermal Performance Evaluation of Orosi; Traditional Colored Window (Case study: Kazeruni House in Shiraz), International Journal of Architectural Engineering and Urban Planning, 34(1),1-16. [DOI:10.2139/ssrn.4544808]
28. Saadatjoo, P., Mahdavinejad, M.j., & Zarkesh, A. (2019). Porosity Rendering in High-Performance Architecture: Wind-Driven Natural Ventilation and Porosity Distribution Patterns, Armanshahr Architecture and Urban Development, 12(26), 73-87. [DOI:10.22034/aaud.2019.89057]
29. Sadeghi pi, N. (2009). A reflection on traditional architecture, Sofeh journal, 48(1), 7-16. [in Persian]
30. chweiker, M., Rissetto, R., & Wagner, A. (2019). Thermal expectation: Influencing factors and its effect on thermal perception, Energy and Buildings, 210, 109729. [DOI:10.1016/j.enbuild.2019.109729]
31. Sharif, H., Habibi, A., & Jamal Abadi, A. (2016). The climatic function of the Chinese knot in Islamic architecture- Case example: Qajar residential buildings of Shiraz, Islamic architectural research, 4(13), 60-73. [in Persian]
32. Sherbaf, A. (1982). Karbandi group, Publications of Sazman, National Antiquities Protection Organization of Iran. [in Persian]
33. Zeynal Zadeh, T., Nikghadam, N., & Fayaz, R. (2020). The role of heat and lighting in the north and south windows optimization, Scientific Journal of Mechanical Engineering, 30(136), 13-23. [in Persian]
34. Zhang, Z., Wang, Y., & Zhu, D. (2024). Overheating in the Tree Shade of Urban Parks: A Field Study of Thermal Adaption in China. Atmosphere. 15(5), 575-590. [DOI:10.3390/atmos15050575]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Culture of Islamic Architecture and Urbanism Journal

Designed & Developed by : Yektaweb