قابل توجه نویسندگان محترم، مقالاتی که از تاریخ 1404/07/13 برای نشریه ارسال می شوند،  شامل پرداخت هزینه بررسی نخواهند شد.

----------------------------------- ---------------------------------------------------
Volume 10, Issue 2 (Semi-Annual 2025)                   CIAUJ 2025, 10(2): 27-46 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltanvash N, Zamani P, Zandsalimi M, Mirgholami M. (2025). Evaluating the impact of introducing landfill site with artificial intelligence algorithms, compatible with environmental and social issues in Rasht city. CIAUJ. 10(2), 27-46. doi:10.61882/ciauj.10.2.570
URL: http://ciauj-tabriziau.ir/article-1-570-en.html
1- Department of Urban Design, Faculty of Architecture and Urban Planning, Tabriz Islamic Art University, Tabriz, Iran
2- Department of Urban Design, Faculty of Architecture and Urban Planning, Tabriz Islamic Art University, Tabriz, Iran , pa.zamani@tabriziau.ac.ir
3- Department of Urban Planning and Design, Faculty of Art and Architecture, University of Kurdistan, Sanandaj, Iran
Abstract:   (819 Views)
The role of improving the quality of environmental management is considered one of the most important and strategic matters of urban management today. In recent years, the population growth and the change in the life patterns of human societies have caused many crises, including the burial and waste disposal system. This problem is very worrying in the northern cities of Iran due to the lack of suitable land and the high level of underground water. Therefore, this research aims to locate the best waste disposal sites. This site selection is based on population estimates up to the year 2050, and ultimately, in order to recommend the best landfill site with a horizon of 2050, the sites were evaluated using the RAIM matrix. Therefore, with the method of spatial analysis and evaluation of the outcome, in the recent study, 17 spatial criteria were selected, which were inves-tigated with the methods of artificial intelligence and vector machine to investigate the suitability of land for waste burial. The research results of the comparison of vector machine artificial intelligence showed that despite the use of fewer criteria, artificial intelligence has a higher ability to identify the talent of the region with an accuracy coefficient of ROC of 87.65% compared to the existing sites and threshold criteria of the country, the ability to rely on the results has it. The result of the study showed that 3% of the area will be able to create a landfill from 50 to 75%; 0.01 percent, equivalent to 22 hectares, has the potential of 75 to 85% of development. With these interpretations, the limits of Rasht city based on the artificial neural network model are very high and any attempt to create a burial site requires an evaluation of the consequences. Locations showed that 22 hectares with high capacity are located in the Zarbal factory and west of the Lakan forest. which is based on the results of evaluating the result of the RAIM matrix; The Lakan site is the best option for creating a new waste burial site. The criteria related to air quality, surface and underground water quality, and tourism contain the most threats. Also, compared to the continuation of the Caravan site, which has a -477 score, it is the worst possible scenario for the region. 
Full-Text [PDF 2203 kb]   (84 Downloads)    
Type of Study: Original Article | Subject: Conceptualization of theorizing in Islamic architecture and urban ism
Received: 2024/06/18 | Accepted: 2024/07/25 | ePublished: 2025/12/30

References
1. Aliakbari-Beidokhti, Z., Ghazizade, M. J., & Gholamalifard, M. (2017). ENVIRONMENTAL IMPACT ASSESSMENT OF MUNICIPAL SOLID WASTE DISPOSAL SITE USING RAPID IMPACT ASSESSMENT MATRIX (RIAM) ANALYSIS IN MASHHAD CITY, IRAN. Environmental Engineering & Management Journal (EEMJ), 16(10). [In Persian]. [DOI:10.30638/eemj.2017.244]
2. Anagnostopoulos, K. P., Vavatsikos, A. P., Spiropoulos, N., & Kraias, I. (2010). Land suitability analysis for natural wastewater treatment systems using a new GIS add-in for supporting criterion weight elicitation methods. Operational Research, 10, 91-108. doi: 10.1007/s12351-009-0055-5. [DOI:10.1007/s12351-009-0055-5]
3. Bahrami, Y., Hassani, H., & Maghsoudi, A. (2021). Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran. GeoJournal, 86, 1797-1816. [In Persian]. [DOI:10.1007/s10708-020-10162-y]
4. Balkema, A. J., Preisig, H. A., Otterpohl, R., & Lambert, F. J. (2002). Indicators for the sustainability assessment of wastewater treatment systems. Urban water, 4(2), 153-161. [DOI:10.1016/S1462-0758(02)00014-6]
5. Barzegar, R., Moghaddam, A. A., Tziritis, E., Adamowski, J., Nassar, J. B., Noori, M., ... & Kazemian, N. (2020). Exploring the hydrogeochemical evolution of cold and thermal waters in the Sarein-Nir area, Iran using stable isotopes (δ18O and δD), geothermometry and multivariate statistical approaches. Geothermics, 85, 101815. [DOI:10.1016/j.geothermics.2020.101815]
6. Binder, C. R., Feola, G., & Steinberger, J. K. (2010). Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environmental impact assessment review, 30(2), 71-81. doi: 10.1016/j.eiar.2009.06.002. [DOI:10.1016/j.eiar.2009.06.002]
7. Brancher, M., Knauder, W., Piringer, M., & Schauberger, G. (2020). Temporal variability in odour emissions: to what extent this matters for the assessment of annoyance using dispersion modelling. Atmospheric Environment: X, 5, 100054. doi: 10.1016/j.aeaoa.2019.100054. [DOI:10.1016/j.aeaoa.2019.100054]
8. Conti, C., Guarino, M., & Bacenetti, J. (2020). Measurements techniques and models to assess odor annoyance: A review. Environment international, 134, 105261. doi: 10.1016/j.envint.2019.105261. [DOI:10.1016/j.envint.2019.105261]
9. Danesh, G., Monavari, S. M., Omrani, G. A., Karbasi, A., & Farsad, F. (2021). Detection of suitable areas for waste disposal of petrochemical industries using integrated methods based on geographic information system. Arabian Journal of Geosciences, 14, 1-12. doi: 10.1007/s12517-021-07779-9. [DOI:10.1007/s12517-021-07779-9]
10. Daneshpour, S. A., & Pajouh, H. D. (2014). Evaluation of Beauty Quality in Urban Landscape Based on the Concept of Time Dimension (Case Study: River Floodway of Zargandeh District, Tehran, Iran). Evaluation, 4(4), 440-450. [In Persian].
11. Esmailzadeh, O., Hosseini, S. M., Tabari, M., Baskin, C. C., & Asadi, H. (2011). Persistent soil seed banks and floristic diversity in Fagus orientalis forest communities in the Hyrcanian vegetation region of Iran. Flora-Morphology, Distribution, Functional Ecology of Plants, 206(4), 365-372. doi: 10.1016/j.flora.2010.04.024. [DOI:10.1016/j.flora.2010.04.024]
12. Estay-Ossandon, C., & Mena-Nieto, A. (2018). Using a fuzzy TOP-SIS-based scenario analysis to improve municipal solid waste planning and forecasting: a case study of Canary archipelago (1999-2030). Journal of Cleaner Production. [DOI:10.1016/j.jclepro.2017.10.324]
13. Geneletti, D. (2013). Assessing the impact of alternative land-use zoning policies on future ecosystem services. Environmental Impact Assessment Review, 40, 25-35. doi: 10.1016/j.eiar.2012.12.003. [DOI:10.1016/j.eiar.2012.12.003]
14. Gentil, E. C., Damgaard, A., Hauschild, M., Finnveden, G., Eriksson, O., Thorneloe, S., ... & Christensen, T. H. (2010). Models for waste life cycle assessment: Review of technical assumptions. Waste Management, 30(12), 2636-2648. doi: 10.1016/j.wasman.2010.06.004. [DOI:10.1016/j.wasman.2010.06.004]
15. Gholamalifard, M., Phillips, J., & Ghazizade, M. J. (2017). Evaluation of unmitigated options for municipal waste disposal site in Tehran, Iran using an integrated assessment approach. Journal of environmental planning and management, 60(5), 792-820. doi: 10.1080/09640568.2016.1181610. [DOI:10.1080/09640568.2016.1181610]
16. Gorsevski, P. V., Donevska, K. R., Mitrovski, C. D., & Frizado, J. P. (2012). Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average. Waste management, 32(2), 287-296. doi: 10.1016/j.wasman.2011.09.023. [DOI:10.1016/j.wasman.2011.09.023]
17. Hajehforooshnia, S., Soffianian, A., Mahiny, A. S., & Fakheran, S. (2011). Multi objective land allocation (MOLA) for zoning Ghamishloo Wildlife Sanctuary in Iran. Journal for Nature Conservation, 19(4), 254-262. [DOI:10.1016/j.jnc.2011.03.001]
18. Isalou, A. A., Zamani, V., Shahmoradi, B., & Alizadeh, H. (2013). Landfill site selection using integrated fuzzy logic and analytic network process (F-ANP). Environmental earth sciences, 68, 1745-1755. doi: 10.1007/s12665-012-1865-y. [DOI:10.1007/s12665-012-1865-y]
19. Jiang, J., Wang, P., Lung, W. S., Guo, L., & Li, M. (2012). A GIS-based generic real-time risk assessment framework and decision tools for chemical spills in the river basin. Journal of hazardous materials, 227, 280-291. doi: 10.1016/j.jhazmat.2012.05.051. [DOI:10.1016/j.jhazmat.2012.05.051]
20. Kavyanifar, B., Tavakoli, B., Torkaman, J., Mohammad Taheri, A., & Ahmadi Orkomi, A. (2020). Coastal solid waste prediction by applying machine learning approaches (Case study: Noor, Mazandaran Province, Iran). Caspian Journal of Environmental Sciences, 18(3), 227-236. doi: 10.22124/CJES.2020.4135. [In Persian].
21. Kulisz, M., & Kujawska, J. (2021). Application of artificial neural network (ANN) for water quality index (WQI) prediction for the river Warta, Poland. Journal of Physics: Conference Series, 2130, 012028. doi: 10.1088/1742-6596/2130/1/012028. [DOI:10.1088/1742-6596/2130/1/012028]
22. Norsa'adah, B., Salinah, O., Naing, N. N., & Sarimah, A. (2020). Community health survey of residents living near a solid waste open dumpsite in Sabak, Kelantan, Malaysia. International journal of environmental research and public health, 17(1), 311. doi: 10.3390/ijerph17010311. [DOI:10.3390/ijerph17010311]
23. Nouri, H., Ghayour, H., Masoodian, A., Azadi, M., & Ildoromi, A. (2013). The Effect of Sea Surface Temperature and 2m Air Temperature on Precipitation Events in the Southern Coasts of Caspian Sea. Ecopersia, 1(4), 369-383. [In Persian].
24. Olaya, V. (2004). A gentle introduction to SAGA GIS. The SAGA User Group eV, Gottingen, Germany, 208. doi: 10.1017/CBO9781107415324.004. [DOI:10.1017/CBO9781107415324.004]
25. Rahime, M., Gholamalifard, M., & Hesari, A. R. E. (2020). Modelling the temporal and spatial wind energy trend in the Caspian Sea. [DOI:10.21203/rs.3.rs-84580/v1]
26. Rasoul, A. M., Jalali, R., Abdi, A., Salari, N., Rahimi, M., & Mohammadi, M. (2019). The effect of self-management education through weblogs on the quality of life of diabetic patients. BMC medical informatics and decision making, 19, 1-12. doi: 10.1186/s12911-019-0941-6. [DOI:10.1186/s12911-019-0941-6]
27. Sarkodie, S. A., & Owusu, P. A. (2021). Global assessment of environment, health and economic impact of the novel coronavirus (COVID-19). Environment, development and sustainability, 23(4), 5005-5015. doi: 10.1007/s10668-020-00801-2. [DOI:10.1007/s10668-020-00801-2]
28. Shahabi, H., Keihanfard, S., Ahmad, B. B., & Amiri, M. J. (2014). Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environmental Earth Sciences, 71, 4221-4233. doi: 10.1007/s12665-013-2816-y. [DOI:10.1007/s12665-013-2816-y]
29. Srivastava, D., Mueller, M., & Hewlett, E. (2016). Executive Summary. Better Ways to Pay Heal. Care, 9-10. doi: 10.1787/9789264258211-en. [DOI:10.1787/9789264258211-en]
30. Sun, Z., Cheng, Z., Wang, L., Lou, Z., Zhu, N., Zhou, X., & Feng, L. (2017). The typical MSW odorants identification and the spatial odorants distribution in a large-scale transfer station. Environmental Science and Pollution Research, 24, 7705-7713. doi: 10.1007/s11356-017-8455-1. [DOI:10.1007/s11356-017-8455-1]
31. Suthar, S., & Sajwan, A. (2014). Rapid impact assessment matrix (RIAM) analysis as decision tool to select new site for municipal solid waste disposal: A case study of Dehradun city, India. Sustainable Cities and Society, 13, 12-19. doi: 10.1016/j.scs.2014.03.007. [DOI:10.1016/j.scs.2014.03.007]
32. Thapa, R. B., & Murayama, Y. (2012). Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landscape and Urban Planning, 105(1-2), 140-148. doi: 10.1016/j.landurbplan.2011.12.007. [DOI:10.1016/j.landurbplan.2011.12.007]
33. Wagh, C. H., & Gujar, M. G. (2014). The environmental impact assessment by using the Battelle Method. International Journal of Science and Research, 3(7), 82-86.
34. Yang, X., Chen, H., Wang, Y., & Xu, C. Y. (2016). Evaluation of the effect of land use/cover change on flood characteristics using an integrated approach coupling land and flood analysis. Hydrology Research, 47(6), 1161-1171. doi: 10.2166/nh.2016.108. [DOI:10.2166/nh.2016.108]
35. Yousefloo, A., & Babazadeh, R. (2020). Designing an integrated municipal solid waste management network: A case study. Journal of cleaner production, 244, 118824. doi: 10.1016/j.jclepro.2019.118824. [DOI:10.1016/j.jclepro.2019.118824]
36. Yukalang, N., Clarke, B., & Ross, K. (2018). Solid waste management solutions for a rapidly urbanizing area in Thailand: Recommendations based on stakeholder input. International journal of environmental research and public health, 15(7), 1302. doi: 10.3390/ijerph15071302. [DOI:10.3390/ijerph15071302]
37. Zahedi Dehuii, L., Qishlaqi, A., & Mortazawi, M. S. (2019). Evaluating the contamination level of total petroleum hydrocarbons (TPHs) and heavy metals in coastal sediments of Tiab Mangroves (Hormozgan Province). Journal of Stratigraphy and Sedimentology Researches, 35(1), 73-90. [In Persian].
38. Zangeneh, A., Jadid, S., & Rahimi-Kian, A. (2011). A fuzzy environmental-technical-economic model for distributed generation planning. Energy, 36(5), 3437-3445. doi: 10.1016/j.energy.2011.03.048. [DOI:10.1016/j.energy.2011.03.048]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Culture of Islamic Architecture and Urbanism Journal

Designed & Developed by : Yektaweb